Saturday, October 26, 2013

Monocrystalline silicon is expensive to produce

Monocrystalline silicon is expensive to produce, and is usually only justified in production of integrated circuits, where tiny crystal imperfections can interfere with tiny circuit paths. IBM ThinkPad T61 8898 CPU Fan For other uses, other types of pure silicon which do not exist as single crystals may be employed. These include hydrogenated amorphous silicon and upgraded metallurgical-grade silicon (UMG-Si) which are used in the production of low-cost, large-area electronics in applications such asliquid crystal displays, and of large-area, low-cost, thin-film solar cells. IBM ThinkPad R50p 2889 CPU Fan Such semiconductor grades of silicon which are either slightly less pure than those used in integrated circuits, or which are produced in polycrystalline rather than monocrystalline form, make up roughly similar amount of silicon as are produced for the monocrystalline silicon semiconductor industry, or 75,000 to 150,000 metric tons per year. IBM ThinkPad R50p 1830 CPU Fan However, production of such materials is growing more quickly than silicon for the integrated circuit market. By 2013 polycrystalline silicon production, used mostly in solar cells, is projected to reach 200,000 metric tons per year, while monocrystalline semiconductor silicon production (used in computer microchips) remains below 50,000 tons/year. IBM ThinkPad R50 1829 CPU Fan Although silicon is readily available in the form of silicates, very few organisms have a use for it. Diatoms, radiolaria andsiliceous sponges use biogenic silica as a structural material to construct skeletons. In more advanced plants, the silicaphytoliths (opal phytoliths) are rigid microscopic bodies occurring in the cell; some plants, for example rice, need silicon for their growth.[58][59][60] IBM ThinkPad R50P CPU Fan Although silicon was proposed to be an ultra trace nutrient, its exact function in the biology of animals is still under discussion. Higher organisms are only known to use it in very limited occasions in the form ofsilicic acid and soluble silicates.[citation needed] Silicon is known to be needed for synthesis of elastin and collagen; the aorta contains the highest quantity of elastin and silicon.[61] IBM Thinkpad W500 CPU Fan Silicon is currently under consideration for elevation to the status of a "plant beneficial substance by the Association of American Plant Food Control Officials (AAPFCO)."[62][63] Silicon has been shown in university and field studies to improve plant cell wall strength and structural integrity,[64] improve drought and frost resistance, decrease lodging potential and boost the plant's natural pest and disease fighting systems.[65] Silicon has also been shown to improve plant vigor and physiology by improving root mass and density, and increasing above ground plant biomass and crop yields.[64] Compaq Presario CQ41-206TU CPU Fan Hypothetical silicon-based lifeforms are the subject of silicon biochemistry, by analogy with carbon-based lifeforms. Silicon, being below carbon in the periodic table, is thought to have similar enough properties that would make silicon-based life possible, but much different from life as we know it. Amorphous silicon (a-Si) is the non-crystalline allotropic form of silicon. It can be deposited in thin films at low temperatures onto a variety of substrates. It offers some unique capabilities for a variety of electronics.  SONY Vaio VPC-EB4X1E/BQ CPU Fan Silicon is a fourfold coordinated atom that is normally tetrahedrally bonded to four neighboring silicon atoms. In crystalline silicon (c-Si) this tetrahedral structure continues over a large range, thus forming a well-ordered crystal lattice. In amorphous silicon this long range order is not present. Rather, the atoms form a continuous random network. HP G62-374CA CPU Fan Moreover, not all the atoms within amorphous silicon are fourfold coordinated. Due to the disordered nature of the material some atoms have a dangling bond. Physically, these dangling bonds represent defects in the continuous random network and may cause anomalous electrical behavior. Likewise, the material can be passivated by hydrogen, which bonds to the dangling bonds and can reduce the dangling bond density by several orders of magnitude. HP Pavilion dv5-1203eg CPU Fan Hydrogenated amorphous silicon (a-Si:H) has a sufficiently low amount of defects to be used within devices such as solar photovoltaic cells, particularly in theprotocrystalline growth regime.[1][2] However, hydrogenation is unfortunately associated with light-induced degradation of the material, termed the Staebler–Wronski effect. HP Pavilion dv7-3131ez CPU Fan Amorphous alloys of silicon and carbon (amorphous silicon carbide, also hydrogenated, a-Si1-xCx:H) are an interesting variant. Introduction of carbon atoms adds extra degrees of freedom for control of the properties of the material. The film could also be made transparent to visible light. Increasing concentrations of carbon in the alloy widen the electronic gap between conduction and valence bands (also called "optical gap" and bandgap). Dell Vostro 3450 CPU Fan This can potentially increase the light efficiency of solar cells made with amorphous silicon carbide layers. On the other hand, the electronic properties as asemiconductor (mainly electron mobility), are adversely affected by the increasing content of carbon in the alloy, due to the increased disorder in the atomic network. Several studies are found in the scientific literature, mainly investigating the effects of deposition parameters on electronic quality, SONY Vaio VGN-CR23/N CPU Fan but practical applications of amorphous silicon carbide in commercial devices are still lacking. While a-Si suffers from lower electronic performance compared to c-Si, it is much more flexible in its applications. For example, a-Si layers can be made thinner than c-Si, which may produce savings on silicon material cost. One further advantage is that a-Si can be deposited at very low temperatures, e.g., as low as 75 degrees Celsius. HP Pavilion dv6-3043tx CPU Fan This allows for deposition on not only glass, but plastic as well, making it a candidate for a roll-to-roll processing technique. Once deposited, a-Si can be doped in a fashion similar to c-Si, to form p-type or n-type layers and ultimately to form electronic devices. Another advantage is that a-Si can be deposited over large areas by PECVD. HP Pavilion dv6-3163eo CPU Fan The design of the PECVD system has great impact on the production cost of such panel, therefore most equipment suppliers put their focus on the design of PECVD for higher throughput, that leads to lower manufacturing cost[4] particularly when thesilane is recycled.[5] Amorphous silicon has become the material of choice for the active layer in thin-film transistors (TFTs), which are most widely used in large-area electronicsapplications, mainly for liquid-crystal displays (LCDs). HP Pavilion dv7-1003eo CPU Fan a-Si has been used as a photovoltaic solar cell material for devices which require very little power, such as pocket calculators, because their lower performance compared to traditional c-Si solar cells is more than offset by their simplified and lower cost of deposition onto a substrate. More recently, improvements in a-Si construction techniques have made them more attractive for large-area solar cell use as well. Dell Vostro 3450 CPU Fan Here their lower inherent efficiency is made up, at least partially, by their thinness – higher efficiencies can be reached by stacking several thin-film cells on top of each other, each one tuned to work well at a specific frequency of light. This approach is not applicable to c-Si cells, which are thick as a result of their construction technique and are therefore largely opaque, blocking light from reaching other layers in a stack.  HP Pavilion dv7-3067nr CPU Fan The main advantage of a-Si in large scale production is not efficiency, but cost. a-Si cells use approximately 1% of the silicon needed for typical c-Si cells, and the cost of the silicon is by far the largest factor in cell cost (no source). However, the higher costs of manufacture due to the multi-layer construction have, to date, made a-Si unattractive except in roles where their thinness or flexibility are an advantage. SONY Vaio VGN-CR23/N CPU Fan Typically, amorphous silicon thin-film cells use a p-i-n structure. Typical panel structure includes front side glass, TCO, thin film silicon, back contact,polyvinyl butyral (PVB) and back side glass. UNI-SOLAR, a division of Energy Conversion Devices produces a version of flexible backings, used in roll-on roofing products. Photovoltaic thermal hybrid solar collectors(PVT), are systems that convert solar radiation into thermal and electrical energy. HP Pavilion dv7-1129wm CPU Fan These systems combine aphotovoltaic cell, which converts electromagnetic radiation (photons) into electricity, with a solar thermal collector, which captures the remaining energy and removes waste heat from the PV module. Photovoltaic (PV) cells suffer from a drop in efficiency with the rise in temperature due to increased resistance. HP Pavilion G72-b15EV CPU Fan Most such systems can be engineered to carry heat away from the PV cells thereby cooling the cells and thus improving their efficiency by lowering resistance.[6]Although this is an effective method, it causes the thermal component to under-perform compared to a solar thermal collector. Recent research showed that a-Si:H PV with low temperature coefficients allow the PVT to be operated at high temperatures, creating a more symbiotic PVT system and improving performance of the a-Si:H PV by about 10%.Compaq Presario CQ60-417DX CPU Fan Microcrystalline silicon (also called nanocrystalline silicon) is amorphous silicon, but also contains small crystals. It absorbs a broader spectrum of light and is flexible. Micromorphous silicon module technology combines two different types of silicon, amorphous and microcrystalline silicon, in a top and a bottom photovoltaic cell. HP Pavilion dv7-3080eg CPU Fan Sharp produces cells using this system in order to more efficiently capture blue light, increasing the efficiency of the cells during the time where there is no direct sunlight falling on them. Protocrystalline silicon is often used to optimize the open circuit voltage of a-Si photovoltaics. Xunlight Corporation, which has received over $40 million of institutional investments,[ HP Pavilion dv9233ca CPU Fan has completed the installation of its first 25 MW wide-web, roll-to-roll photovoltaic manufacturing equipment for the production of thin-film silicon PV modules.[9] Anwell Technologies has also completed the installation of its first 40 MW a-Si thin film solar panel manufacturing facility in Henan with its in-house designed multi-substrate-multi-chamber PECVD equipment. HP Envy 14-1195la CPU Fan Polycrystalline silicon, also called polysilicon, is a material consisting of small silicon crystals. It differs from single-crystal silicon, used for electronics and solar cells, and from amorphous silicon, used for thin film devices and solar cells. In single crystal silicon, the crystalline framework is homogenous, which can be recognized by an even external colouring.[1HP Pavilion dv6-2115sf CPU Fan ]In single crystal silicon, also called monocrystal, the crystal lattice of the entire sample is continuous and unbroken with no grain boundaries. Large single crystals are exceedingly rare in nature and can also be difficult to produce in the laboratory (see also recrystallisation). In contrast, in an amorphous structure the order in atomic positions is limited to short range. HP Pavilion dv7-3067nr CPU Fan Polycrystalline and paracrystalline phases (see Polycrystal) are composed of a number of smaller crystals or crystallites.Polycrystalline silicon (or semicrystalline silicon, polysilicon, poly-Si, or simply "poly") is a material consisting of multiple small silicon crystals. Polycrystalline cells can be recognized by a visible grain, a “metal flake effect”. HP Pavilion dv7-1129wm CPU Fan Semiconductor grade (also solar grade) polycrystalline silicon is converted to "single crystal" silicon – meaning that the randomly associated crystallites of silicon in "polycrystalline silicon" are converted to a large "single" crystal. Single crystal silicon is used to manufacture most Si-based microelectronic devices. Polycrystalline silicon can be as much as 99.9999% pure.[2] HP Pavilion G72-b15EV CPU Fan Ultra-pure poly is used in the semiconductor industry, starting from poly rods that are two to three meters in length. In microelectronic industry (semiconductor industry), poly is used both at the macro-scale and micro-scale (component) level. Single crystals are grown using the Czochralski process, float-zone and Bridgman techniques. HP Pavilion dv6-2140se CPU Fan At the component level, polysilicon has long been used as the conducting gate material in MOSFET and CMOS processing technologies. For these technologies it is deposited using low-pressure chemical-vapour deposition (LPCVD) reactors at high temperatures and is usually heavily doped n-type or p-type. SONY Vaio VGN-SZ6RXN/C CPU Fan More recently, intrinsic and doped polysilicon is being used in large-area electronics as the active and/or doped layers inthin-film transistors. Although it can be deposited by LPCVD, plasma-enhanced chemical vapour deposition (PECVD), or solid-phase crystallization (SPC) of amorphous silicon in certain processing regimes, these processes still require relatively high temperatures of at least 300 °C. HP Pavilion dv7-2130ev CPU Fan These temperatures make deposition of polysilicon possible for glass substrates but not forplastic substrates. The deposition of polycrystalline silicon on plastic substrates is motivated by the desire to be able to manufacture digital displays on flexible screens. Therefore, a relatively new technique called laser crystallization has been devised to crystallize a precursor amorphous silicon (a-Si) material on a plastic substrate without melting or damaging the plastic. ACER eMachines G520 CPU Fan Short, high-intensity ultraviolet laser pulses are used to heat the deposited a-Si material to above the melting point of silicon, without melting the entire substrate. The molten silicon will then crystallize as it cools. By precisely controlling the temperature gradients, researchers have been able to grow very large grains, of up to hundreds of micrometers in size in the extreme case, although grain sizes of 10 nanometers to 1 micrometer are also common. HP Pavilion dv5-2132dx CPU Fan In order to create devices on polysilicon over large-areas however, a crystal grain size smaller than the device feature size is needed for homogeneity of the devices. Another method to produce poly-Si at low temperatures is metal-induced crystallization where an amorphous-Si thin film can be crystallized at temperatures as low as 150C if annealed while in contact of another metal film such as aluminium, gold, or silver. Compaq Presario CQ60-307ea CPU Fan Polysilicon has many applications in VLSI manufacturing. One of its primary uses is as gate electrode material for MOS devices. A polysilicon gate's electrical conductivity may be increased by depositing a metal (such as tungsten) or a metal silicide (such as tungsten silicide) over the gate. Polysilicon may also be employed as a resistor, a conductor, or as an ohmic contact for shallow junctions, with the desired electrical conductivity attained by doping the polysilicon material. HP Pavilion dv6-2010sa CPU Fan One major difference between polysilicon and a-Si is that the mobility of the charge carriers of the polysilicon can be orders of magnitude larger and the material also shows greater stability under electric field and light-induced stress. This allows more complex, high-speed circuity to be created on the glass substrate along with the a-Si devices, which are still needed for their low-leakage characteristics. Toshiba Satellite A40-702 CPU Fan When polysilicon and a-Si devices are used in the same process this is called hybrid processing. A complete polysilicon active layer process is also used in some cases where a small pixel size is required, such as in projection displays. Polycrystalline silicon is also a key component of solar panel construction. Growth of the photovoltaic solar industry was limited by the supply of the polysilicon material.[3] SONY Vaio VGN-AR21B CPU Fan For the first time, in 2006, over half of the world's supply of polysilicon was being used for production of renewable electricity solar power panels.[4] Only twelve factories were known to produce solar-grade polysilicon in 2008, however by 2013 the number now stands at over 100 manufacturers.[5] Monocrystalline silicon is higher priced and more efficient than polycrystalline. SONY Vaio VPC-EB3E1E/PI CPU Fan Polysilicon deposition, or the process of depositing a layer of polycrystalline silicon on a semiconductor wafer, is achieved by pyrolyzing silane (SiH4) at 580 to 650 °C. This pyrolysis process releases hydrogen. Polysilicon layers can be deposited using 100% silane at a pressure of 25–130 Pa (0.2 to 1.0 Torr) or with 20–30% silane (diluted in nitrogen) at the same total pressure. SONY Vaio VPC-EB3E1E/WI CPU Fan Both of these processes can deposit polysilicon on 10–200 wafers per run, at a rate of 10–20 nm/min and with thickness uniformities of ±5%. Critical process variables for polysilicon deposition include temperature, pressure, silane concentration, and dopant concentration. Wafer spacing and load size have been shown to have only minor effects on the deposition process. SONY Vaio VGN-FS660/W CPU Fan The rate of polysilicon deposition increases rapidly with temperature, since it followsArrhenius behavior, that is deposition rate = A·exp(–qEa/kT) where q is electron charge and k is the Boltzmann constant. The activation energy (Ea) for polysilicon deposition is about 1.7 eV. Based on this equation, the rate of polysilicon deposition increases as the deposition temperature increases. HP Pavilion G61-631NR CPU Fan There will be a minimum temperature, however, wherein the rate of deposition becomes faster than the rate at which unreacted silane arrives at the surface. Beyond this temperature, the deposition rate can no longer increase with temperature, since it is now being hampered by lack of silane from which the polysilicon will be generated. Such a reaction is then said to be 'mass-transport-limited.'HP Pavilion dv6560el CPU Fan When a polysilicon deposition process becomes mass-transport-limited, the reaction rate becomes dependent primarily on reactant concentration, reactor geometry, and gas flow. When the rate at which polysilicon deposition occurs is slower than the rate at which unreacted silane arrives, then it is said to be surface-reaction-limited. HP Pavilion dv6-2128ca CPU Fan A deposition process that is surface-reaction-limited is primarily dependent on reactant concentration and reaction temperature. Deposition processes must be surface-reaction-limited because they result in excellent thickness uniformity and step coverage. A plot of the logarithm of the deposition rate against the reciprocal of the absolute temperature in the surface-reaction-limited region results in a straight line whose slope is equal to –qEa/k. HP Pavilion dv7-3004el CPU Fan At reduced pressure levels for VLSI manufacturing, polysilicon deposition rate below 575 °C is too slow to be practical. Above 650 °C, poor deposition uniformity and excessive roughness will be encountered due to unwanted gas-phase reactions and silane depletion. Pressure can be varied inside a low-pressure reactor either by changing the pumping speed or changing the inlet gas flow into the reactor. HP Pavilion dv7-4050ev CPU Fan If the inlet gas is composed of both silane and nitrogen, the inlet gas flow, and hence the reactor pressure, may be varied either by changing the nitrogen flow at constant silane flow, or changing both the nitrogen and silane flow to change the total gas flow while keeping the gas ratio constant. Recent investigations have shown that e-beam evaporation, HP G42-367TU CPU Fan followed by SPC (if needed) can be a cost effective and faster alternative for producing solar grade poly-Si thin films.[6] Modules produced by such method are shown to have an photovoltaic efficiency of ~6%.[7] Polysilicon doping, if needed, is also done during the deposition process, usually by adding phosphine, arsine, or diborane. HP Pavilion dv5-1172el CPU Fan Adding phosphine or arsine results in slower deposition, while adding diborane increases the deposition rate. The deposition thickness uniformity usually degrades when dopants are added during deposition. Upgraded metallurgical-grade (UMG) silicon (also known as UMG-Si) solar cell is being produced as a low cost alternative to polysilicon created by the Siemens process. UMG greatly reduces impurities in a variety of ways that require less equipment and energy than the Siemens process.[8] Toshiba Satellite A105-S4084 CPU Fan UMG is about 99% pure which is three or more orders of magnitude less pure and about 10 times less expensive than polysilicon ($1.70 to $3.20 per kg from 2005 to 2008 compared to $40 to $400 per kg for polysilicon). It has the potential to provide nearly-as-good solar cell efficiency at 1/5 the capital expenditure, half the energy requirements, and less than $15/kg.[9] HP Pavilion dv4-1038tx CPU Fan In 2008 several companies were touting the potential of UMG in 2010, but the credit crisis greatly lowered the cost of polysilicon and several UMG producers put plans on hold.[10][11] The Siemens process will remain the dominant form of production for years to come due to more efficiently implementing the Siemens process. GT Solar claims a new Siemens process can produce at $27/kg and may reach $20/kg in 5 years. HP Pavilion dv7-3060sb CPU Fan GCL-Poly expects production costs to be $20/kg by end of 2011.[12] Elkem Solar estimates their UMG costs to be $25/kg, with a capacity of 6,000 tonnes by the end of 2010. Calisolar expects UMG technology to produce at $12/kg in 5 years with boron at 0.3 ppm and phosphorus at 0.6 ppm.[13] At $50/kg and 7.5 g/W, module manufacturers spend $0.37/W for the polysilicon. HP Pavilion dv7-6055sf CPU Fan For comparison, if a CdTe manufacturer pays spot price for tellurium ($420/kg in April 2010) and has a 3 micron thickness, their cost would be 10 times less, $0.037/Watt. At 0.1 g/W and $31/ozt for silver, polysilicon solar producers spend $0.10/W on silver.[14] Q-Cells, Canadian Solar, and Calisolar have used Timminco UMG. SONY VGN-CS108D  CPU Fan Timminco is able to produce UMG-Si with 0.5 ppm boron for $21/kg but were sued by shareholders because they had expected $10/kg.[15] RSI and Dow Corning have also been in litigation over UMG-Si technology. The polysilicon manufacturing market is growing very fast. According to Digitimes, in July 2011, the total polysilicon production in 2010 was 209,000 tons. DELL XPS M170 CPU Fan First-tier suppliers account for 64% of the market while China-based polysilicon firms have 30% of market share. The total production is likely to increase 37.4% to 281,000 tons by end of 2011.[17] For 2012,EETimes Asia predicts 328,000 tons production with only 196,000 tons of demand, with spot prices expected to fall 56%. While good for renewable energy prospects, the subsequent drop in price could be brutal for manufacturers.[18] HP Pavilion G72-b15SV CPU Fan As of late 2012, SolarIndustryMag reports a capacity of 385,000 tons will be reached by yearend 2012.[19] But as established producers (mentioned below) expand their capacities, additional newcomers – many from Asia – are moving into the market. Even long-time players in the field have recently had difficulties expanding plant production. HP G62-120ES CPU Fan It is yet unclear which companies will be able to produce at costs low enough to be profitable after the steep drop in spot-prices of the last months. Prices of polysilicon are often divided into two categories, contract and spot prices, and higher purity commands higher prices. While in booming installation times, price rally occurs in polysilicon. HP Pavilion dv6-3034ss   CPU   Fan Not only spot prices surpass contract prices in the market; but it is also hard to acquire enough polysilicon. Buyers will accept down payment and long term agreements to acquire a large enough volume of polysilicon. On the contrary, spot prices will be below contract prices once the solar PV installation is in a down trend. In late 2010, booming installation brought up the spot prices of polysilicon. HP Pavilion dv7-3165ef  CPU Fan In the first half of 2011, prices of polysilicon kept strong owing to the FIT policies of Italy. The solar PV price survey and market research firm, PVinsights,[42] reported that the prices of polysilicon might be dragged down by lack of installation in the second half of 2011.[43] As recently as 2008 prices were over $400/kg spiking from levels around $200/kg, while seen falling to $15/kg in 2013. HP X16-1000 Series CPU Fan Black silicon is a semiconductor material, a surface modification of silicon with very low reflectivity and correspondingly high absorption of visible (andinfrared) light. The modification was discovered in the 1980s as an unwanted side effect of reactive ion etching (RIE).[1][2] Another method for forming a similar structure was developed in Eric Mazur's laboratory at Harvard University (1998). IBM ThinkPad Z61m  CPU Fan

No comments:

Post a Comment