Saturday, October 26, 2013
More recently, intrinsic and doped polysilicon
More recently, intrinsic and doped polysilicon is being used in large-area electronics as the active and/or doped layers inthin-film transistors. Although it can be deposited by LPCVD, plasma-enhanced chemical vapour deposition (PECVD), or solid-phase crystallization (SPC) of amorphous silicon in certain processing regimes, these processes still require relatively high temperatures of at least 300 °C. HP Pavilion dv7-2130ev CPU Fan
These temperatures make deposition of polysilicon possible for glass substrates but not forplastic substrates. The deposition of polycrystalline silicon on plastic substrates is motivated by the desire to be able to manufacture digital displays on flexible screens. Therefore, a relatively new technique called laser crystallization has been devised to crystallize a precursor amorphous silicon (a-Si) material on a plastic substrate without melting or damaging the plastic. ACER eMachines G520 CPU Fan
Short, high-intensity ultraviolet laser pulses are used to heat the deposited a-Si material to above the melting point of silicon, without melting the entire substrate. The molten silicon will then crystallize as it cools. By precisely controlling the temperature gradients, researchers have been able to grow very large grains, of up to hundreds of micrometers in size in the extreme case, although grain sizes of 10 nanometers to 1 micrometer are also common. HP Pavilion dv5-2132dx CPU Fan
In order to create devices on polysilicon over large-areas however, a crystal grain size smaller than the device feature size is needed for homogeneity of the devices. Another method to produce poly-Si at low temperatures is metal-induced crystallization where an amorphous-Si thin film can be crystallized at temperatures as low as 150C if annealed while in contact of another metal film such as aluminium, gold, or silver. Compaq Presario CQ60-307ea CPU Fan
Polysilicon has many applications in VLSI manufacturing. One of its primary uses is as gate electrode material for MOS devices. A polysilicon gate's electrical conductivity may be increased by depositing a metal (such as tungsten) or a metal silicide (such as tungsten silicide) over the gate. Polysilicon may also be employed as a resistor, a conductor, or as an ohmic contact for shallow junctions, with the desired electrical conductivity attained by doping the polysilicon material. HP Pavilion dv6-2010sa CPU Fan
One major difference between polysilicon and a-Si is that the mobility of the charge carriers of the polysilicon can be orders of magnitude larger and the material also shows greater stability under electric field and light-induced stress. This allows more complex, high-speed circuity to be created on the glass substrate along with the a-Si devices, which are still needed for their low-leakage characteristics. Toshiba Satellite A40-702 CPU Fan
When polysilicon and a-Si devices are used in the same process this is called hybrid processing. A complete polysilicon active layer process is also used in some cases where a small pixel size is required, such as in projection displays.
Polycrystalline silicon is also a key component of solar panel construction. Growth of the photovoltaic solar industry was limited by the supply of the polysilicon material.[3] SONY Vaio VGN-AR21B CPU Fan
For the first time, in 2006, over half of the world's supply of polysilicon was being used for production of renewable electricity solar power panels.[4] Only twelve factories were known to produce solar-grade polysilicon in 2008, however by 2013 the number now stands at over 100 manufacturers.[5] Monocrystalline silicon is higher priced and more efficient than polycrystalline. SONY Vaio VPC-EB3E1E/PI CPU Fan
Polysilicon deposition, or the process of depositing a layer of polycrystalline silicon on a semiconductor wafer, is achieved by pyrolyzing silane (SiH4) at 580 to 650 °C. This pyrolysis process releases hydrogen.
Polysilicon layers can be deposited using 100% silane at a pressure of 25–130 Pa (0.2 to 1.0 Torr) or with 20–30% silane (diluted in nitrogen) at the same total pressure. SONY Vaio VPC-EB3E1E/WI CPU Fan
Both of these processes can deposit polysilicon on 10–200 wafers per run, at a rate of 10–20 nm/min and with thickness uniformities of ±5%. Critical process variables for polysilicon deposition include temperature, pressure, silane concentration, and dopant concentration. Wafer spacing and load size have been shown to have only minor effects on the deposition process. SONY Vaio VGN-FS660/W CPU Fan
The rate of polysilicon deposition increases rapidly with temperature, since it followsArrhenius behavior, that is deposition rate = A·exp(–qEa/kT) where q is electron charge and k is the Boltzmann constant. The activation energy (Ea) for polysilicon deposition is about 1.7 eV. Based on this equation, the rate of polysilicon deposition increases as the deposition temperature increases. HP Pavilion G61-631NR CPU Fan
There will be a minimum temperature, however, wherein the rate of deposition becomes faster than the rate at which unreacted silane arrives at the surface. Beyond this temperature, the deposition rate can no longer increase with temperature, since it is now being hampered by lack of silane from which the polysilicon will be generated. Such a reaction is then said to be 'mass-transport-limited.'HP Pavilion dv6560el CPU Fan
When a polysilicon deposition process becomes mass-transport-limited, the reaction rate becomes dependent primarily on reactant concentration, reactor geometry, and gas flow.
When the rate at which polysilicon deposition occurs is slower than the rate at which unreacted silane arrives, then it is said to be surface-reaction-limited. HP Pavilion dv6-2128ca CPU Fan
A deposition process that is surface-reaction-limited is primarily dependent on reactant concentration and reaction temperature. Deposition processes must be surface-reaction-limited because they result in excellent thickness uniformity and step coverage. A plot of the logarithm of the deposition rate against the reciprocal of the absolute temperature in the surface-reaction-limited region results in a straight line whose slope is equal to –qEa/k. HP Pavilion dv7-3004el CPU Fan
At reduced pressure levels for VLSI manufacturing, polysilicon deposition rate below 575 °C is too slow to be practical. Above 650 °C, poor deposition uniformity and excessive roughness will be encountered due to unwanted gas-phase reactions and silane depletion. Pressure can be varied inside a low-pressure reactor either by changing the pumping speed or changing the inlet gas flow into the reactor. HP Pavilion dv7-4050ev CPU Fan
If the inlet gas is composed of both silane and nitrogen, the inlet gas flow, and hence the reactor pressure, may be varied either by changing the nitrogen flow at constant silane flow, or changing both the nitrogen and silane flow to change the total gas flow while keeping the gas ratio constant. Recent investigations have shown that e-beam evaporation, HP G42-367TU CPU Fan
followed by SPC (if needed) can be a cost effective and faster alternative for producing solar grade poly-Si thin films.[6] Modules produced by such method are shown to have an photovoltaic efficiency of ~6%.[7]
Polysilicon doping, if needed, is also done during the deposition process, usually by adding phosphine, arsine, or diborane. HP Pavilion dv5-1172el CPU Fan
Adding phosphine or arsine results in slower deposition, while adding diborane increases the deposition rate. The deposition thickness uniformity usually degrades when dopants are added during deposition.
Upgraded metallurgical-grade (UMG) silicon (also known as UMG-Si) solar cell is being produced as a low cost alternative to polysilicon created by the Siemens process. UMG greatly reduces impurities in a variety of ways that require less equipment and energy than the Siemens process.[8] Toshiba Satellite A105-S4084 CPU Fan
UMG is about 99% pure which is three or more orders of magnitude less pure and about 10 times less expensive than polysilicon ($1.70 to $3.20 per kg from 2005 to 2008 compared to $40 to $400 per kg for polysilicon). It has the potential to provide nearly-as-good solar cell efficiency at 1/5 the capital expenditure, half the energy requirements, and less than $15/kg.[9] HP Pavilion dv4-1038tx CPU Fan
In 2008 several companies were touting the potential of UMG in 2010, but the credit crisis greatly lowered the cost of polysilicon and several UMG producers put plans on hold.[10][11] The Siemens process will remain the dominant form of production for years to come due to more efficiently implementing the Siemens process. GT Solar claims a new Siemens process can produce at $27/kg and may reach $20/kg in 5 years. HP Pavilion dv7-3060sb CPU Fan
GCL-Poly expects production costs to be $20/kg by end of 2011.[12] Elkem Solar estimates their UMG costs to be $25/kg, with a capacity of 6,000 tonnes by the end of 2010. Calisolar expects UMG technology to produce at $12/kg in 5 years with boron at 0.3 ppm and phosphorus at 0.6 ppm.[13] At $50/kg and 7.5 g/W, module manufacturers spend $0.37/W for the polysilicon. HP Pavilion dv7-6055sf CPU Fan
For comparison, if a CdTe manufacturer pays spot price for tellurium ($420/kg in April 2010) and has a 3 micron thickness, their cost would be 10 times less, $0.037/Watt. At 0.1 g/W and $31/ozt for silver, polysilicon solar producers spend $0.10/W on silver.[14]
Q-Cells, Canadian Solar, and Calisolar have used Timminco UMG. SONY VGN-CS108D CPU Fan
Timminco is able to produce UMG-Si with 0.5 ppm boron for $21/kg but were sued by shareholders because they had expected $10/kg.[15] RSI and Dow Corning have also been in litigation over UMG-Si technology.
The polysilicon manufacturing market is growing very fast. According to Digitimes, in July 2011, the total polysilicon production in 2010 was 209,000 tons. DELL XPS M170 CPU Fan
First-tier suppliers account for 64% of the market while China-based polysilicon firms have 30% of market share. The total production is likely to increase 37.4% to 281,000 tons by end of 2011.[17] For 2012,EETimes Asia predicts 328,000 tons production with only 196,000 tons of demand, with spot prices expected to fall 56%. While good for renewable energy prospects, the subsequent drop in price could be brutal for manufacturers.[18] HP Pavilion G72-b15SV CPU Fan
As of late 2012, SolarIndustryMag reports a capacity of 385,000 tons will be reached by yearend 2012.[19]
But as established producers (mentioned below) expand their capacities, additional newcomers – many from Asia – are moving into the market. Even long-time players in the field have recently had difficulties expanding plant production. HP G62-120ES CPU Fan
It is yet unclear which companies will be able to produce at costs low enough to be profitable after the steep drop in spot-prices of the last months.
Prices of polysilicon are often divided into two categories, contract and spot prices, and higher purity commands higher prices. While in booming installation times, price rally occurs in polysilicon. HP Pavilion dv6-3034ss CPU Fan
Not only spot prices surpass contract prices in the market; but it is also hard to acquire enough polysilicon. Buyers will accept down payment and long term agreements to acquire a large enough volume of polysilicon. On the contrary, spot prices will be below contract prices once the solar PV installation is in a down trend. In late 2010, booming installation brought up the spot prices of polysilicon. HP Pavilion dv7-3165ef CPU Fan
In the first half of 2011, prices of polysilicon kept strong owing to the FIT policies of Italy. The solar PV price survey and market research firm, PVinsights,[42] reported that the prices of polysilicon might be dragged down by lack of installation in the second half of 2011.[43] As recently as 2008 prices were over $400/kg spiking from levels around $200/kg, while seen falling to $15/kg in 2013. HP X16-1000 Series CPU Fan
Black silicon is a semiconductor material, a surface modification of silicon with very low reflectivity and correspondingly high absorption of visible (andinfrared) light. The modification was discovered in the 1980s as an unwanted side effect of reactive ion etching (RIE).[1][2] Another method for forming a similar structure was developed in Eric Mazur's laboratory at Harvard University (1998). IBM ThinkPad Z61m CPU Fan
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment